
EFFICIENT INSTANCE ANNOTATION IN MULTI-INSTANCE LEARNING

Anh T. Pham, Raviv Raich, and Xiaoli Z. Fern

School of EECS, Oregon State University, Corvallis, OR 97331-5501
{phaman, raich, xfern}@eecs.oregonstate.edu

ABSTRACT

The cost associated with manually labeling every individual instance

in large datasets is prohibitive. Significant labeling efforts can be

saved by assigning a collective label to a group of instances (a bag).

This setup prompts the need for algorithms that allow labeling in-

dividual instances (instance annotation) based on bag-level labels.

Probabilistic models in which instance-level labels are latent vari-

ables can be used for instance annotation. Brute-force computation

of instance-level label probabilities is exponential in the number of

instances per bag due to marginalization over all possible combina-

tions. Existing solutions for addressing this issue include approxi-

mate methods such as sampling or variational inference. This paper

proposes a discriminative probability model and an expectation max-

imization procedure for inference to address the instance annotation

problem. A key contribution is a dynamic programming solution for

exact computation of instance probabilities in quadratic time. Exper-

iments on bird song, image annotation, and two synthetic datasets

show a significant accuracy improvement by 4%-14% over a recent

state-of-the-art rank loss SIM method.

Index Terms— Multi-instance learning, discriminative model,

expectation maximization, logistic regression, dynamic program-

ming

1. INTRODUCTION

Multiple instance learning (MIL) is a framework for representing

complex objects (bags) with multiple feature vectors (instances). For

example, images are represented as a collection of segments and doc-

uments are represented as a collection of paragraphs. To reduce la-

beling effort, often a bag is provided with a bag-level label instead of

instance-level labels. For example, instead of providing appropriate

labels for all segments of an image, the image itself is tagged with

the union of its instance labels. This setting gives rise to the study of

the multiple instance multiple label learning (MIML) problem [1].

One problem in the MIML framework is how to predict bag-

level labels for unseen bags. Another problem is how to learn a clas-

sifier that can predict instance-level labels, which is referred to as

the instance annotation problem and is the focus of this paper. This

problem introduces a challenge: the training data does not contain

instance-level labels, only bag-level labels.

To address the instance annotation problem, M3MIML [1] com-

putes a bag-level score function by taking the maximum over the

instance-level scores. This principle may ignore useful information

from other instances in the bag. The rank loss support instance ma-

chine (rank loss SIM) [2] introduces a softmax score function that

takes into account all instances with the weight corresponding to
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their normalized scores. However, both [1] and [2] have no mecha-

nism to model the dependency between labels of instances given the

label of their bag.

Some probabilistic graphical models have been proposed for in-

stance annotation. To avoid computationally complex inference, ap-

proximate methods such as sampling [3] or variational inference [4]

have been proposed. In [5], a generative model for the MIML prob-

lem and a tractable expectation maximization method are proposed.

The authors postulate that when large amounts of labeled data are

available, accuracy can be improved using discriminative models.

To improve on the shortcomings of the aforementioned algorithms,

we propose a discriminative probability model with exact inference

method.

Our contribution in this paper is two-fold. First, we propose a

discriminative model based on logistic regression for the instance an-

notation problem. Second, in the inference phase, we propose an ex-

pectation maximization framework to maximize the log-likelihood.

To compute the posterior probability for the label of every instance,

we propose a novel dynamic programming approach which reduces

the run time from exponential to quadratic in the number of instances

per bag thus enabling exact inference for the problem. Experiments

on bird song, image annotation as well as synthetic datasets show

a significant improvement, at around 4%-14%, in accuracy of our

algorithm compared to the rank loss SIM method [2].

2. PROBLEM FORMULATION

We consider the instance annotation problem in the MIML frame-

work. In this problem, the available training data consists of B bags

of multiple instances, as {(Xb, Yb)}
B
b=1. In this notation, Xb is a

set consisting of nb instances {xb1, xb2, . . . , xbnb
}, where xbi ∈ R

d

represents the feature vector of the ith instance in the bth bag. In

addition, the bag-level label Yb is a subset of Y = {1, 2, . . . , C},

the instance-level label set. Our goal is to train a classifier that maps

an instance in R
d to a label in Y using only the aforementioned bag-

level labeled multi-instance data.

2.1. The proposed model: ORed-logistic regression

We consider a discriminative probability model as in Fig. 1, which

we denote as the ORed logistic regression (ORLR) model. We as-

sume that the labeled bags (Xb, Yb) are generated independently,

and that an instance label ybi is generated based on the instance fea-

ture vector xbi using the logistic regression model

p(ybi|xbi, w) =

∏C

c=1 eI(ybi=c)wT

c
xbi

∑C

c=1 ewT
c

xbi

, (1)

where wc ∈ R
d is the weight for the cth class and w = [w1, w2,

. . . , wC ]. Furthermore, we assume that the label of a bag is equal to
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Fig. 1: Graphical model for our instance annotation problem where

the observation is shaded.

the union of its instance labels. Consequently, the probability of the

bag-level label given the instance-level labels of the bth bag is

p(Yb|yb1, yb2, . . . , ybnb
) = Ψ(Yb, yb1, . . . , ybnb

), (2)

where Ψ(Yb, yb1, . . . , ybnb
) is 1 if Yb =

⋃nb

i=1 ybi and 0 otherwise.

2.2. Maximum Likelihood

We consider the maximum likelihood framework for inference. To

simplify the notation, we use (XD, YD) to denote {(Xb, Yb)}
B
b=1.

Our goal is to estimate the model parameters w given observations

XD and YD by maximizing the likelihood given by p(XD, YD|w).

Since XD and w are independent, p(XD|w) = p(XD). Instead

of maximizing p(YD, XD|w), we maximize p(YD|XD, w) since

p(YD, XD|w) = p(YD|XD, w)p(XD) is dependent on the parame-

ter w only through p(YD|XD, w). The probability of the observed

bag-level label YD given the observed instance feature vector XD

and the unknown parameter w is computed as follows

p(YD|XD, w) =

B
∏

b=1

p(Yb|Xb, w) (3)

=
B

∏

b=1

[
C

∑

yb1=1

· · ·
C

∑

ybn
b
=1

p(Yb, yb1, . . . , ybnb
|Xb, w)]

=

B
∏

b=1

[

C
∑

yb1=1

· · ·

C
∑

ybn
b
=1

nb
∏

i=1

p(ybi|xbi, w)Ψ(Yb, yb1, . . . , ybnb
)].

Note that the last step in (3) is based on two facts. First, all the

instance-level labels ybi are independent given their feature vectors

xbi and the parameter w. Second, the label of the bag Yb is determin-

istic given the labels of its instances {ybi}
nb

i=1. Taking the logarithm

on both sides of (3), we have the log-likelihood L(YD|XD, w) =
log p(YD|XD, w). Maximizing L(YD|XD, w), in the case of in-

complete data where the labels of instances are unknown, is gen-

erally a difficult problem since, to the best of our knowledge, no

closed-form solution exists. To maximize the log-likelihood, we pro-

pose an expectation maximization (EM) solution.

3. THE PROPOSED INFERENCE APPROACH

Expectation-maximization (EM) is an iterative algorithm for solving

maximum likelihood (ML) [6]. Given the observed data x, the ML

estimator of the parameter θ is given by

θ̂ = argmax
θ

l(θ), (4)

where l(θ) = log p(x|θ). In EM [6], the hidden data y is introduced

and the algorithm is based on the joint distribution of the hidden and

observed data p(x, y|θ) as follows

• E-step: Compute g(θ, θ(k)) = Ey[log p(x, y|θ)|x, θ(k)]

• M-step: θ(k+1)=argmaxθ g(θ, θ(k)).

By using an auxiliary function g(θ, θ′) for the log-likelihood l(θ),

the EM algorithm is guaranteed in each iteration to satisfy l(θ(k+1))

≥ l(θ(k)). In this paper, we use the generalized EM [7]. Instead of

maximizing the auxiliary function g(θ, θ(k)), we only require θ(k+1)

such that g(θ(k+1), θ(k)) ≥ g(θ(k), θ(k)).

3.1. Expectation maximization for multi-instance learning

We proceed with the application of EM to our problem. The auxil-

iary function g(w, w′) is equal to Ey[log p(YD, y|XD, w)|YD, XD, w′].
Based on the conditional rule and the i.i.d. assumption of the instance

labels, we have

p(YD, y|XD, w) = p(y|XD, w)p(YD|y, XD, w)

= [

B
∏

b=1

nb
∏

i=1

p(ybi|xbi, w)]p(YD|y),
(5)

where p(YD|y) =
∏B

b=1 Ψ(Yb, yb1, yb2, . . . , ybnb
). Substituting

(1) for p(ybi|xbi, w) and taking the logarithm on both sides of (5),

yields

log p(YD, y|XD, w) =

B
∑

b=1

nb
∑

i=1

C
∑

c=1

I(ybi = c)w
T
c xbi (6)

−
B

∑

b=1

nb
∑

i=1

log(
C

∑

c=1

ewT

c
xbi) + log p(YD|y).

Finally, by taking the expectation based on the distribution of the

hidden variables ybi conditioned on the observed data XD and YD

given the parameter w′, we obtain

g(w, w
′) = Ey[log p(YD, y|XD, w)|YD, XD, w

′] (7)

=
B

∑

b=1

nb
∑

i=1

[
C

∑

c=1

p(ybi = c|Yb, Xb, w
′)w

T
c xbi − log(

C
∑

c=1

ewT

c
xbi)] + ζ,

where ζ = Ey[log p(YD|y)|YD, XD, w′] is a constant independent

of w. Based on (7), we obtain the following generalized EM itera-

tions for the ORLR model:

• E-step: Compute p(ybi = c|Yb, Xb, w(k))

• M-step: Find w(k+1) such that g(w(k+1), w(k)) ≥ g(w(k), w(k)).

3.1.1. The expectation step and our challenge

To compute p(ybi = c|Yb, Xb, w) from p(ybi = c, Yb|Xb, w), we

apply the definition of conditional probability

p(ybi = c|Yb, Xb, w) =
p(ybi = c, Yb|Xb, w)

∑C

c=1 p(ybi = c, Yb|Xb, w)
. (8)

To compute p(ybi = c, Yb|Xb, w), we keep the label c for ybi and



marginalize over all other instance labels as follows

p(ybi = c, Yb|Xb, w) (9)

=
C

∑

yb1=1

· · ·
C

∑

ybn
b
=1

[p(yb1, . . . , ybi = c, . . . , ybnb
|Xb, w)

× Ψ(Yb, yb1, . . . , ybi = c, . . . , ybnb
)].

Note that in the summation, we exclude summing over ybi. Fur-

thermore, computing p(ybi = c, Yb|Xb, w) is O(Cnb−1), which is

exponential in the number of instances per bag. Common approach

to address such intractable problems in graphical models is by using

approximate inference methods such as sampling [3] or variational

inference [4]. However, to the best of our knowledge, a computa-

tionally efficient closed-form solution for (9) has not been proposed.

We proceed with a computationally efficient dynamic programming

method to solve this problem.

3.1.2. Dynamic programming forward algorithm for the E-step

To simplify the notation in this section, we only consider a bag X

with its label Y. Assuming a particular ordering of the instances in

the bag, we denote a sub-bag containing from the 1st to the ith in-

stance by Xi, and the label of this sub-bag by Yi. For a bag label

value L, we use L\c to denote a label containing all of the labels in

L except c.

In our model, Yi+1 =
⋃i+1

j=1 yj = yi+1

⋃

Yi. Therefore, for

c /∈ L, p(yi+1 = c, Yi+1 = L|Xi+1, w) = 0. For c ∈ L, there are

two mutually exclusive events that result in (yi+1 = c, Yi+1 = L)

including (yi+1 = c, Yi = L) and (yi+1 = c, Yi = L\c). There-

fore, we have the following result when c ∈ L

p(yi+1 = c, Y
i+1 = L|Xi+1, w) (10)

= p(yi+1 = c, Y
i = L|Xi+1, w) + p(yi+1 = c, Y

i = L\c|X
i+1, w).

Since the labels of all the instances are independent, yi+1 and Yi are

independent given Xi+1. Thus, we can rewrite (10) as follows

p(yi+1 = c, Y
i+1 = L|Xi+1, w) (11)

= p(yi+1 = c|xi+1, w)[p(Y
i = L|Xi, w) + p(Y

i = L\c|X
i, w)].

Summing over all possible values of c in (11), we obtain

p(Y
i+1 = L|Xi+1, w) =

∑

c∈L

p(yi+1 = c|xi+1, w)× (12)

[p(Y
i = L|Xi, w) + p(Y

i = L\c|X
i, w)].

Note that (12) allows for an incremental computation of p(Yi+1 =
L|Xi+1, w), ∀L, given p(Yi = L|Xi, w), ∀L. This result is key to

the efficient computation presented in the following. We now re-

turn to the original notation. Recall that for the bag Xb, there are

nb instances and |Yb| classes. Thus, for an arbitrary sub-bag Xi+1
b

with i < nb, there are 2|Yb| possible labels which we denote as L1,

L2,. . . , and L2|Y
b
|

. We proceed with Lemma 1.

Lemma 1. Given the probability of the sub-bag Xi
b having label Lv ,

1 ≤ ∀v ≤ 2|Yb|, the computation of the sub-bag Xi+1
b having label

Lu, 1 ≤ u ≤ 2|Yb|, is O(|Yb|).

Proof. This directly follows from the number of terms 2|Yb| in the

summation in (12).

We derive a forward algorithm to compute the probability in (9).

First, without loss of generality, we swap the position of the ith

and nbth instances. Next, we incrementally compute p(Yi+1
b =

Lu|Xi+1
b , w) from p(Yi

b = Lv|Xi
b, w) based on (12), ∀ 1 ≤ u, v ≤

2|Yb|. Using (11) for the last instance (i.e., i = nb-1), we have the

final result for p(ybnb
= c, Yb = L|Xb, w).

Lemma 2. The time complexity to compute p(ybi = c, Yb =

L|Xb, w) is O(|Yb|2
|Yb|nb).

Proof. We build a 2|Yb| by nb table for each instance and the com-

putation for each entry is O(|Yb|). Due to space limitation, we omit

the detailed proof.

Lemma 2 suggests that the calculation of (9) per instance is linear in

nb the number of instances per bag and hence the computation of (9)

for i = 1, 2, . . . , nb is quadratic in nb.

3.1.3. Maximization step

To increase objective (7), we consider gradient ascent. Specifically,

we construct a backtracking [8] line search along the gradient to

guarantee g(w(k+1), w(k)) ≥ g(w(k), w(k)) where

w
(k+1)
c = w

(k)
c +

∂g(w, w(k))

∂wc

∣

∣

∣

∣

w=w(k)

× δ, (13)

and the first derivative of g(w, w(k)) w.r.t. wc is computed as follows

∂g(w, w(k))

∂wc

=
B

∑

b=1

nb
∑

i=1

[p(ybi = c|Yb, Xb, w
(k))xbi −

ewT

c
xbixbi

∑C

c=1 ewT
c

xbi

]

=

B
∑

b=1

nb
∑

i=1

[p(ybi = c|Yb, Xb, w
(k)) − p(ybi = c|Xb, w)]xbi. (14)

The iterations will converge once (14) becomes zero. Intuitively,

the inference approach fits a logistic regression model to ensure the

average instance per class with and without the bag-level label infor-

mation are the same.

3.2. Instance-level prediction

We consider two settings for instance-level prediction. The first set-

ting is inductive prediction where the test bag-level label is unknown

and the instance-level labels yti are predicted. Using the maximum-

a-posteriori (MAP) approach, the label for the ith instance of the tth
test bag is computed as follows

ŷti = argmax
k

p(yti = k|xti, w), (15)

where p(yti = k|xti, w) is as in (1). The second setting is transduc-

tive prediction where the test bag-level label is known. We estimate

yti using the MAP approach as follows

ŷti = argmax
k

p(yti = k, Yt|Xt, w). (16)

Note that since bag-level label information is available, the MAP

prediction in (16) differs from (15) by the Yt term. We use the

dynamic programming technique in 3.1.2 to compute p(yti =
k, Yt|Xt, w).

4. EXPERIMENTS

We evaluate our approach on two real datasets: HJA bird song and

MSCV2 and on two synthetic datasets: Carroll and Frost. Detailed

information of these datasets can be found in [2, 9]1. Table 1 shows

1We thank Dr. Forrest Briggs for his help with the dataset.



Table 1: Statistics of datasets in our experiments

Name
classes bags instances dimension

(C) (B) (N) (d)

HJA bird 13 548 4998 38

MSCV2 23 591 1758 48

Carroll 26 166 717 16

Frost 26 144 565 16

Table 2: Accuracy results for M-LR, M-RLSIM, S-LR, and S-SVM

Dataset HJA bird MSCV2 Carroll Frost

M-LR-I 0.701 0.557 0.624 0.645

M-RLSIM-I 0.619 0.467 0.540 0.575

M-LR-T 0.852 0.832 0.861 0.880

M-RLSIM-T 0.817 0.697 0.745 0.775

S-LR 0.720 0.605 0.690 0.700

S-SVM 0.772 0.638 0.772 0.753

the number of classes, the number of bags, the number of instances,

and the instance feature dimension for each dataset.

4.1. Baseline methods

We compare the performance of our proposed algorithm with that

of the logistic regression trained in the single instance single label

(SISL) setting, the rank loss SIM [2] (an SVM trained in the MIML

setting), and the SVM trained in the SISL setting. Different from

the MIML framework where only bag-level labels are given, in the

SISL framework, a label is provided for each training instance. Con-

sequently, we may expect a higher accuracy. Training our model in

the SISL framework (i.e., when yib are provided) follows the stan-

dard logistic regression training. In the maximization step, the log-

likelihood function follows (7) except that p(ybi = c|Yb, Xb, w′) is

replaced by I(ybi = c) as in (6).

4.2. Transductive and the inductive training

In the transductive setting, we use the entire dataset for training and

test. Note that in this setting, we know the bag-level labels and our

goal is to find the instance-level labels. In the inductive prediction,

where labels of test bags are unknown, we use a 10-fold cross val-

idation to separate the data into training and test. To provide a fair

comparison to [2], we use the same 10-fold validation as in [2].

4.3. Results and discussion

We report the classification accuracy for our algorithm (M-LR) and

for the logistic regression trained in the standard SISL setting (S-

LR), and compare with the classification accuracy of the rank loss

SIM (M-RLSIM) and the SVM trained in the standard SISL set-

ting (S-SVM) in Table 2. From Table 2, we observe a significant

improvement in accuracy of our algorithm compared to that of the

rank loss SIM method. Our method is about 4-14% higher in accu-

racy compared to the rank loss method in almost all datasets. For

the inductive prediction, our algorithm shows an improvement of

7-9% over rank loss SIM. In the transductive setting, the improve-

ments relative to rank loss SIM are in the range of 4-14% (14% for

MSCV2 and 4% for HJA bird). Furthermore, even though our al-

gorithm learns from ambiguous bag-level labels, it approaches the

performance of the logistic regression classifier trained in the SISL

setting that learns from unambiguous instance-level labels. Espe-

cially for the HJA bird song dataset, the accuracy of our algorithm

is just 2% lower than that of the logistic regression classifier trained

in the SISL setting. In addition, note that even though the perfor-

mance of SISL logistic regression is lower than that of SISL SVM,

the accuracy of our algorithm is still higher than that of rank loss

SIM. These results support the idea that carefully factoring in all the

instances in each bag improves the classifier accuracy.

5. CONCLUSIONS

This paper addresses the instance annotation problem in the MIML

setting. We propose a discriminative ORed-logistic regression model

and develop a computationally efficient training algorithm. A key

challenge is how to efficiently compute the posterior probability

of the instance-level labels given their bag-level labels. Our algo-

rithm avoids commonly used approximations such as sampling or

variational Bayes and is well suited for cases where the number of

instances per bag is large and the number of classes per bag is small.

By defining sub-bags and dynamically computing the probability

of their labels, we can compute all instance probabilities without

approximation in quadratic time in the number of instances per bag.

Experiments on bird song, image annotation, and two synthetic

datasets show that the accuracy of our method is significant better,

at around 7-9% in the inductive setting and 4-14% in the transduc-

tive setting, than that of the recent rank loss SIM method. We are

currently working on linear run time probability computation.
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